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Abstract

Neural networks can be thought of as combinations of generic pieces linked together
in varying architectures. Many different models and architectures have been presented
in the published literature. Networks may differ both in the characterization of their
pieces and in the connection patterns of those pieces. In order to exploit the similarities
between models, incorporate the differences between models, and automate the process
of linking the pieces together, a prototype of a generalized research environment for
neural networks is being developed. The main virtue of this generalized environment is
the flexibility it provides for testing various neural network architectural and processing
decisions without having to write programs. The environment encompasses the ability
to specify desired characteristics (e.g., activation functions, connection masks, sub-net
sizes) as parameters to network creation functions; it does not force a programmer
to combine such characteristics by altering the program code itself. The specification
of characteristics and the resulting automatic creation of the corresponding neural
network is herein referred to as the instantiation of a neural network. Alternatively,
this process can be thought of as the dynamic creation of neural networks. Dynamic
creation is achieved by the computation of connection patterns and node organizations
within the environment; computation is performed by generic creation routines, not
in user written routines. Standard modularization techniques have also been used to
facilitate activation rule and/or learning rule modification (a priori). The viability
of this research environment has been demonstrated by its use in the development
of a generalized implementation of Kunihiko Fukushima’s neocognitron. This paper
initially introduces the generalized research environment, subsequently discusses the
architecture of a test case network (the neocognitron), and finally presents the initial
results in testing a neocognitron instantiated by the environment.




1 Introduction

Testing neural network architectures can be a tedious process. Typically, a researcher utilizes
a collection of generic routines, either purchased or developed in-house, for computing and
displaying input and output activations of connected neurons. One of the main problems
with this situation is that in order to tesv varying architectures, new routines must be written
which combine the network nodes in the appropriate connection architecture and incorporate
the respective activation functions. The new routines for setting up the architecture must
subsequently be debugged themselves before the complete architecture itself can be tested.
Emphasis on empirical architecture analysis is typically not considered as a component of
the generic package. In order to ameliorate the myriad of foreseen complications in empir-
ically analyzing numerous and varying architectures for pattern recognition using digitized
images, a project has been undertaken to develop a generalized neural network research en-
vironment with the flexibility to encompass arbitrary network architectures. Additionally,
the environment has been designed to dynamically put together the pieces of an intended
network architecture in much the same way a programmer would. The key advancement over
more conventional approaches is that the pieces are woven together automatically within the

environment.

Given the challenge of creating a generalized neural network research environment, devel-
opment began with the necessary primitive components of neural networks: 1. activation
functions, 2. learning rules, and 3. connection and connection weight representations. Subse-
quently, routines were designed which put together these primitive components based upon
parametric specifications. For example, procedures were written to calculate connection

patterns based upon network characteristics, such as the size of component networks (i.e.,




projection areas) and the types of nodes within each component network (i.e., projection
specification, as in 3 X 3 squares projecting from each node). The test domain for the en-
vironment has been Fukushima’s neocognitron (Fukushima, 1980). At present, any neocog-
nitron can be instantiated (i.e., any combination of plane sizes, number of planes per layer,
and number of layers) by merely passing parameters to the network creation functions which

calculate connection patterns, plane organizations, and layer hierarchies.

The creation of this environment has proceeded along two conceptual fronts. In order to
achieve the goal of applying the neocognitron’s architecture to pattern recognition tasks
involving real-world images, an environment was developed within which neocognitrons with
varying organizations could be dynamically created. Alternatively, there was a constant
concern for the general purpose nature of the environment. The creation of the environment
began with the development of generalized knowledge/data structures incorporating the
requirements of the neocognitron neural network model in conjunction with being extensible
to alternative neural network models as well. Additionally, as indicated above, routines were
developed to calculate connection patterns based upon desired characteristics of the network.
Finally, a collection of display routines has been written and subsequently used to debug

and analyze the systems created by the environment.

The combination of generalized knowledge/data structures, connection computation, and
analysis displays has been evolved into an environment which can be tailored to function as
a general purpose and extensible neocognitron. The general purpose nature and extensibil-
ity are direct results of the dynamic creation of the connection architectures and hierarchi-
cal network dimensions based upon the parameterized calculations utilizing the generalized
knowledge/data structures. The belief is maintained that the general-purpose nature of the

design was a valuable contribution to this project because it does not slow the actual process-




ing of the network once created, yet it does provide for flexible extension of the architecture
of the neocognitron, or alternative architecture, as the instantiated networks are tested on
real-world images. The development of the generalized knowledge/data structures and the
initial character recognition testing has been successfully completed. The research effort is

continuing with extensive testing on real-world images.

This paper describes the research environment and network instantiation. Although the
research environment has been designed to instantiate arbitrary network architectures, the
class of networks called neocognitrons is the sole specific network architecture discussed in
this paper. The neocognitron class has been chosen as the example for this discussion be-
cause it provides a rich variety of issues to be addressed without cluttering the mind of
the reader with the details and idiosyncrasies of numerous alternative model types. The
instantiation process and the associated generic knowledge structures are fundamental to
the general purpose nature of the research environment. The general discussion, therefore,
applies to any network architecture. The detailed example itself applies specifically to the
neocognitron class, yet it still elucidates the key issues of the instantiation of any architec-
ture. As discussed in the next section of this paper, alternative architectures are produced by
merely selecting different parametric specifications for the instantiation process. Clarifica-
tion of these general ideas is achieved, in subsequent sections, through a specific example in
the form of the neocognitron. In these latter sections, the neocognitron is reviewed and the
challenges faced in designing the overall environment are highlighted. Finally, test results
are presented and future directions are indicated. The test results are presented using the in-
stantiation of a specific neocognitron as an example so that the accuracy of the instantiation
process can be verified by comparison to other results available in the published literature.

The general purpose nature of the fundamentals of the research environment (i.e., instantia-




tion and generic knowledge representation structures) will be further verified in subsequent
papers demonstrating alternative network architectures. The emphasis of this paper is on
the ideas behind the design and the architecture of the research environment. Details of the

implementation are not significant for this presentation and are, thus, not presented in this

paper.

2 The Research Environment

Neural networks have three main components: 1. processing elements which perform lo-
cal computation, 2. connection architectures which tie processing elements together, and 3.
learning rules which adapt the network. Rather than limiting the environment to a spe-
cific version of a particular network model, standard software modularization and artificial
inteiligence representation techniques have been utilized. Each of the network components
has a modular organization and all of the information required {for elemental computation
is stored locally. The modular structure and localized representation of computation within
the environment form the basis for the realization of a general-purpose research environment
for neural networks. Many of the software techniques applied in the development of this en-
vironment are not new, yet their combined effect has produced a valuable research tool and

many significant insights into how such a system would be designed for general distribution.

Processing elements are structures characterized by activation functions and output func-
tions. Many network models utilize processing elements with a summation activation func-
tion and a nonlinear output function (e.g., perceptrons (Rosenblatt, 1962). Other models

utilize processing elements which have activation functions that incorporate multiplicative




combinations of the input elements and use various forms of nonlinear output functions
(e.g., on-center off-surround shunting networks (Grossberg, 1973), Sigma-Pi units (Rumel-
hart et al., 1986b), and other Higher Order Networks (Lee et al., 1986)). Any activation
function and output function can be incorporated into the processing elements utilized in
the research environment. In order to handle such versatility, the appropriate activation
functions and output functions are encoded within the processing element structure. Refer-
ences to the particular functions are used, rather than the functions themselves, to preserve
modularity and extensibility of the environm=nt. The functions themselves are distinct mod-
ules which are tied to the processing elements via the reference encoded in the processing

element.

The connection architecture is comprised of two components: 1. connections and 2. con-
nection weights. Connections tie processing elements together into a network. Connection
weights bias the significance of the individual connections. With regard to the connections
themselves, there are both output and corresponding input connections. The output connec-
tions indicate the other elements to which an element is connected. The input connections
are structures that indicate which elements send their outputs to the element under consider-
ation. Rather than store connection representations in global processing routines which must
encode the entire connection architecture, the research environment is structured so that the
connections for each processing unit are encoded within the processing element structure
itself. Each processing element is, therefore, a self-contained unit independent of global rou-
tines. Each processing element has a representation of its output connections; the traversal
of connections in the update process is based upon these locally encoded connections, not

on a global representation for the connection architecture.

The connections are computed at the time of network instantiation and stored locally within




each element. The instantiation routines are structured such that the appropriate connec-
tions are computed based upon parameters passed to the respective routines. For example,
if each element in a 5 X 5 network is to project into a 3 X 4 network such that each element
has a 2 X 2 projection and all of the 3 X 4 network elements must be covered, then the
system would compute that the element in position (0, 0) of the 5 X 5 network would be
connected to the elements in positions (0, 0), (0, 1), (1, 0), and (1, 1) of the 3 X 4 network
(see Figure 1). The element in position (4, 4) of the 5 X 5 network would be connected to
the elements in positions (1, 2), (1, 3), (2, 2), and (2, 3) of the 3 X 4 network. A variety
of standard connection architectures have been presented in the neural network literature
(e.g., ART (Carpenter and Grossberg, 1987b; Carpenter and Grossberg, 1987a; Grossberg,
1976a; Grossberg, 1976b), back propagation (Rumelhart et al., 1986a), Hopfield networks
(Hopfield, 1982), and the neocognitron (Fukushima, 1980)). Because the connection calcu-
lation routines are parameterized and actually calculate the connection patterns, arbitrary

algorithmically expressed connection patterns can be realized.

The weight associated with each connection is encoded in a structure separate from the
connection itself and stored in the processing element. The separation of the connections
and the weights provides a decoupling which enables connection architectures to be varied
independently of weight assignment/adaptation and vice versa. The connection information
is available to the weight assignment routines. This information is provided to the assign-
ment routines because the number of connections emanating from an element is an essential
quantity in determining weight assignment, e.g., for a normalized uniform distribution. How-
ever, changing from a normalized uniform to an exponential weight distribution should not
require re-calculation of the connection architecture, it should only require re-calculation of

the weights. Likewise, changing the connection architecture should not alter the weight cal-
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Figure 1: Connections calculated for 2 X 2 projections froma 5 X 5 to a 3 X 4 network.

culation method. The separation of the connection and weight representation provides the
necessary flexibility for network design. The separation of the connectiors and the weights
also provides for flexibility in the maintenance of both ronnections and weight values (e.g.,

during learning).

The learning rules applied in the field of neural networks are typically rules for adjusting the
connection weights. There are a variety of different connection weight learning rules (e.g.,
Hebbian learning (Hebb, 1949), Local Interaction ( Alkon, 1989; Alkon and Rasmussen, 1988;
Alkon, 1984), Competitive Learning (Grossberg, 1987)). Within the research environment,
the learning rules have been associated with the networks via reference to the appropriate
procedures. This standard modularization technique provides a representation for each net-
work to encode the appropriate learning rules. Changing the learning rules, thus, becomes
a parametric change rather than a recoding effort. The learning rule routines are passed the

respective network structures and perform calculation based upon those structures. As a
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result, the learning rules naturally adapt to changing network organizations. The modular-
ization of the learning rules ensures the parametric nature of the network instantiation and

processing routines.

Through the process of actually using the research environment to instantiate neural net-
works and analyze their behavior, many interface needs arose. These needs formed the
specification for the user interface and the user interface has been tailored to those needs. A
by-product of the use of the environment is the recognition of various challenges in under-
standing neural network processing in visual terms rather than purely mathematical terms.
These challenges have provided avenues for the investigation of interface properties neces-
sary for general-purpose neural network environments. Initial results have shown full-color

graphics displays to be a fundamental component of such visualization.

In keeping with the goal of developing a flexible, general-purpose neural network research
environment, the display routines utilize the information contained in the network repre-
sentation to tailor the displays. Thus, as the network and underlying models change, the
displays will automatically be adjusted. Initial investigations have been quite fruitful. A
collection of output displays is presented in the results section (Section 5). For ease of

publication, the color displays have been reproduced as black-and-white images.

In summary, each component of the network ‘carries around’ all the information it needs
for performing its specified functions. The functions themselves are separated from the
representation encoded in each component in order to enhance and ensure modularity. The
modularity is essential for the general purpose nature of the environment. In addition to the
modularity of the networks instantiated within the research environment, a variety of utilities

have been included for the developer/applications programmer/user of the environment. Full
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color graphics displays are utilized to aid comprehension of the distributed processing within
the network. Inputs are presented graphically and can be selected through a point-and-click
window interface. The utilities which are provided have been chosen to aid development and
analysis of neural networks and have been derived from the actual needs occurring in such

processes.

3 The Neocognitron

The neocognitron is a hierarchical neural network model designed to perform visual pattern
recognition tasks (Fukushima, 1980). The main virtue of the neocognitron’s architecture is
that it ameliorates the common problem of distorted or noisy input for pattern recognition.
More specifically, the neocognitron is a pattern recognition architecture which is de-sensitized
to both of two fundamental pattern recognition limitations: 1. positional shifts, and 2.

pattern deformation (e.g., deformation due to noise or other forms of distortion).

The organization of the architecture and the basic processing elements of the neocognitron is
fundamental to its functionality. The neocognitron is a hierarchical arrangement of multiple
laye.s of sub-networks of artificial neurons. The neurons are often called cells in the context of
the neocognitron. The cells are organized into primitive sub-networks which are called planes.
The planes are organized into layers. The layers are the components with which a hierarchy is
established. Each layer in the hierarchy is composed of planes (sub-networks) which contain
both excitatory and inhibitory neurons. There are two main types of excitatory neurons,
each organized into groups of planes: 1. excitatory variable connection weight neurons, S-

cells, and 2. excitatory fixed and nonmodifiable connection neurons, C-cells. There are also
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two types of inhibitory cells: 1. V,-cells, which are variable connection weight inhibitory cells,
and 2. V-cells, which are fixed and nonmodifiable connection network inhibitory cells. These
inhibitory cells are used to ensure that the absence of certain features can be detected. They
would fire and inhibit the excitatory cells (S-cells and C-cells) from firing if the features
to which the inhibitory cells are sensitive are present. Figure 2 depicts the generalized
connection architecture between cells in layers. For simplification of the figures, however,
V-cells have not been presented. In fact, only representative cells are presented for the
excitatory S and C cells. The layout of Figure 2 is significant for this paper because i
will be used in presenting the results. Therefore, the layout will initially be described and

subsequently the connection patterns will be presented.

The six processing layers of the neocognitron’s hierarchy are depicted as double rows in
Figure 2. The input layer is depicted in its own row at the bottom of the figure. Each layer
is labeled according to the characteristics of the planes (i.e., sub-networks) contained in that
layer. In other words, the layer S; contains sub-networks of modifiable S cells; the layer C,
contains sub-networks of nonmodifiable C cells. The nurnber of cells per plane decreases as
one moves from the input layer to the C3 ‘output’ layer. The final C layer contains planes
of single cells. These single cells are used for recognition. The individual cells do not have
a priori recognition significance, but through the course of training, they come to signify a
particular class of patterns. This concept will be further elucidated in the results section

(Section 5).

The cylindrical projection patterns depicted in Figure 2 represent the connection patterns
of particular cells in a layer. The dotted projections from layer S; to the input layer all
emanate from a cell in the same position in the corresponding S plane; each projects to

the same position in the preceding layer. The mid-length dash projections from layer S, to
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Figure 2: Connections between layers of the hierarchy in a neocognitron.
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the input layer all emanate from a cell in the same position in the corresponding S plane.
The distinction between mid-length dash and dotted projections is that they are in different
positions within each S - plane and, therefore, project to different positions in the preceding
layer (input layer). Notice that each projection occupies approximately one-quarter of the
input plane. Each dotted projection is looking for a different pattern in the same position
in the preceding layer. Each mid-length dash projection is looking for the same pattern as
the dotted projection from the same plane, yet it is looking in a different position. This is
the initial foundation for the noise elimination characteristics of the neocognitron; multiple
cells in each plane are looking for the same pattern in different positions and the cells in

each plane are looking for different patterns in the preceding layer.

The second piece in the noise smoothing process is depicted in the solid projections from
the C; planes to the S; planes. These solid projections represent the position assimilation
connections of the C-cells. Active cells within the solid projection areas are treated nearly
equally. In other words, if a particular mid-length dash cell is active rather than the corre-
sponding dotted cell, it can make little difference to the C layer cell. It can become active
regardless of the position of the activation pattern within it’s solid projection area. This is
further exemplified in Figure 3. Before discussing the interaction, however, one last point
needs to be made with regard to Figure 2. The long dash projections from the S, cells to the
C,; cells demonstrate that each cell projects to cells in the same position over all sub-networks
(planes) in the preceding layer. (Note that only a representative collection of projections is
displayed in order to keep the figure from becoming too cluttered.) Additionally, one can
see from Figure 2 that the long dash cells of layer S; are sensitive to the characteristics of
nearly half of the original input layer (both dotted and mid-length dash areas) because of

the position assimilation and noise smoothing of the C, layer. The cells in the final (C3)
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Figure 3: Interaction between cells in the C and S layers of a neocognitron.

layer are sensitive to the entire original input layer.

A detailed depiction of the interaction between S and C cells is presented in Figure 3. Each
cell in an S;;, plane is ‘looking’ for the same thing, but in a different position. That is, each
has the same weight vector but a different position vector. This is demonstrated by the two
active cells (filled-in circies in the Sy, plane) which receive the appropriate hook and vertical
line, whereas the horizontal and diagonal lines do not excite the cell which receives them as

input. The particular input characteristics, to which the cells in a plane are sensitive, are
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determined through training.

The position assimilation characteristics of the cells in the C plane are also represented in
Figure 3. A cellin the C,,; layer becomes active whenever the cells of its input projection area
are sufficiently active. This property 1s termed position assimilation. The effect of position
assimilation is that the C cells smooth noise, distortion, and positional shifts. The final
piece of the noise amelioration puzzle is, thus, the combination of the stepwise assimilation
of position and the extraction of features in a hierarchical manner. Noise is not removed all
at once. Rather noise is removed little by little in each layer of the hierarchy with the final

result being an ability to handle a significant amount of noise.

The criteria for the dynamic creation of this model is based upon the work presented by
Fuk-:ishima in the published literature. The primary reference was (Fukushima and Miyake,
1982). Two additional publications, (Fukushima, 1980) and (Fukushima, 1988), were con-
sulted as necessary. While the formulae and descriptions presented in Fukushima’s writings
form the basis for the effort, an entire environment has been created which can be used to
dynamically create and test a variety of architectural alternatives implied by the variance in
the characteristics of the neocognitrons Fukushima has developed. An additional distinction
in this work is the intended test domain. The test domain for Fukushima’s work has been
character recognition. The goal of the present research effort is to test the effectiveness of

the neocognitron in pattern recognition tasks applied to real-world images.
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4 Challenges Faced

A significant number of challenges faced in the development of the research environment
were particular to the initial test case model, the neocognitron. The foremost challenge in
developing instantiations of the neocognitron (Fukushima and Miyake, 1982) was the sheer
magnitude of the problem. There are a total of over 2.3M connections, each with it’s own
weighting factor, between the 10K cells and 145 planes in the network. Additionally, there
are several parameters which interact and affect the behavior of the network. For example,
each of the seven layers (excluding the input layer) has an intensity of inhibition parameter
to control the amount of noise tolerated in matching a pattern; this parameter interacts
with both the excitatory and inhibitory weights as an output is computed for a particular
network cell. To date, the general behavior of varying cell excitaticz and single final layer
cell activation contingent upon pattern presentation and prior training, as presented by
Fukushima (e.g., (Fukushima and Miyake, 1982)), has been reproduced. With regard to
interaction of changes in the parameters ‘provided’ by Fukushima, minor changes in any of
the values (e.g., initial connection weights, inhibition control parameter, rate of reinforcement
during learning) significantly affected the final behavior of the system. Since there was no
specific direction for adjusting parameters, a generate-and-test paradigm was used until

results became acceptable.

Other challenges faced were issues concerning the research environment itself. One such
challenge was the development of a usable user interface and system utilities. The reason a
usable user interface was needed is that interface requirements were the same as the needs
for debugging, in the most efficient manner possible, the inadequacies of various choices for

network parameters and architectures. In fact, the debugging needs formed the specification
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for the interface. System utilities for writing and reading trained networks were also required
and developed. All of these necessities added to the complexity and effort required in the

completion of the project.

As a final comment with regard to neural networks in general, a heathly respect and skep-
ticism for the currently proclaimed power and versatility of such systems has been gained.
Although it has previously been realized that there are significant limitations in the current
neural computing technology, the way in which these limitations can be corrected is certainly
non-trivial. In fact, there is a question of the ultimate cause of these limitations; the cause
is not intuitively obvious and remains to be discovered. The frustration of trying to debug a
distributed representation, where it is not at all clear wherein the problem lies, was initially
quite discouraging. Mathematical analyses can be quite tedious. Empirical adjustment can
limit the overall power of the resulting network. Further consideration of the problems,

however, provided a spark of enthusiasm for continuing to search for a resolution.

5 Results

The results presented in this paper demonstrate the viability of the research environment
and indicate the accuracy of its instantiation process. In order to have a solid basis for this
accuracy claim, the results of testing a standard neural network architectures are shown.
The test case network is a neocognitron. The neocognitron has been chosen because of the
large size of the network and the complexity of its connection architecture. The results pre-
sented in this section are the actual response characteristics of the instantiated neocognitron

with regard to a variety of input patterns both before and after training. Additionally, a
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collection of test patterns which the instantiated network correctly recognizes is presented.
The accuracy of the instantiated network (neocognitron) can be verified by a comparison of
these results to the results presented in (Fukushima and Miyake, 1982). Such a comparison
indicates that the results presented herein demonstrate that several significant successes have

been achieved with regard to the neocognitrons instantiated by the environment:

Different patterns produce different excitation patterns within the network.

Training of the network alters the excitation patterns of the network.

After training, only a single cell fires at the recognition layer in response to different
stimulus patterns.

Appropriate clusterings are achieved for multiple versions of various numeric characters.

Before training, the activation of the cells within the network is heavily influenced by the
characteristics of the input pattern. Input of a “3” produces activation quite different from
the input of a “2” or a noisy “2”. This is depicted in Figures 4, 5, and 6. Note that in the
C: layer, the activation patterns for the different input patterns are all quite unique. This
is especially significant for the “2” and “noisy 2” since they should be clustered in the same
class, not in distinct classes. Through the process of training, the “2” and “noisy 2” will
be clustered together. One additional comment should be made with regard to the initial
activations before training. Notice that no activation is present in the cells of the S, — C;
layers. The reason is that the S layer activations are a function of the differences between
the excitation patterns of each plane in the preceding layer. The differences are produced
by the particular weighting function chosen within each projection pattern. In other words,

the differences are realized because the connections between the S;;, and C; layers and the
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Figure 4: Activation pattern, before training, in response to the input pattern of a 3.
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connections between the C; and S;_; layers are weighted by some distribution function and
the activations are computed as a function of the weighting function. For the instantiation
presented in this paper, the weighting function for each plane has been chosen to be a
uniform distribution. Therefore, each plane within the C; layer (and also the S; layer) has
an identical activation pattern. The cells in the S, layer are inactive due to the uniform
connections to identical patterns (i.e., no differences are devected). This characteristic only
affects the initial biases as it is changed through training. After training, the connections are
weighted differently and activation is ultimately propagated all the way to the C3 (output)

layer.

The activation patterns within the instantiated neocognitron after training is presented in
Figures 7, 8, and 9. The same input patterns are used as in the before training example,
yet the activation patterns in layers §; — C3 are quite different before and after training.
Two important points should be acknowledged. The first point is that cells in each plane
have become sensitive to different characteristics (features) of the input pattern and, thus,
produce activation patterns that are different in each plane within a layer. The second point
is that distinct C; cells are most active for distinct classes, whereas the same C; cell is
most active for common classes even if distortions of the input pattern occur. Note that
in Figure 7, the system has arbitrarily chosen the cell in the C; layer which responds for a
particular pattern. The important point is not which cell in particular responds but rather
that the same cell at the C; layer responds to the corresponding input pattern of the same
class regardless of positional shifts or pattern deformation. For example, Figures 7 and 8
have different most active cells in the C5 layer because Figure 7 has a “3” as the input and
Figure 8 has a “2” as the input. However, Figures 8 and 9 have the same most active cells

because each represents the activation of the network in response to a variation of a “2”
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leftmost column.

as the input. This common output response within a class and distinct output response
between classes is consistent even though different cells may be active in the S-plane and
C-plane in the preceding layers (i.e., Input Layer, Sy, Ci, Sz, C2). A collection of patterns

which an instantiated neocognitron can recognize is presented in Figure 10.

The results presented in this section demonstrate that the research environment can accu-
rately instantiate a neocognitron based upon parametric specification. This demonstration
has been achieved by the reproduction of the results presented in (Fukushima and Miyake,
1982). To date, initial testing has been performed using the neocognitron in the charac-
ter recognition domain. Subsequent testing is planned with additional network models and

real-world images. One area from which images will be taken is the Automatic Target Recog-
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nition (ATR) domain. The task of testing the research environment and neural networks
instantiated for use in ATR applications is presently under investigation, and the preliminary

results are are quite encouraging for future plans (Gilmore and Czuchry, Jr., 1990a; Gilmore

and Czuchry, Jr., 1990Db).

6 Future Directions

As mentioned previously in this paper, the environment has been designed to facilitate testing
of neural network architectures on digitized images. The motivation for this effort has been an
idea that by using real images as training patterns, network models such as the neocognitron
should, theoretically, be able to extract ‘useful’ information. For example, through training
the instantiated network by using a variety of images which contain a tree, the network
should extract the common pattern of the tree and, thus, be able to indicate the presence
of a tree in subsequent test images. A possible future research effort would investigate the
size of various networks required to actually perform such recognition and to characterize
any preprocessing requirements (e.g., use of Grossberg’s Boundary Contour/Feature Contour
System (Grossberg and Mingolla, 1985) as a preprocessor to simplify processing within the
neocognitron itself). Additionally, the currently instantiated neocognitrons could be used
with the incorporation of recent extensions to the neocognitron’s architecture, i.e., feedback
between layers (Fukushima, 1988), and could possibly provide for segmentation of trees
within the test images after training had occurred. A significant amount of work would be
required in order to obtain such results, but a real possibility of actually attaining them does

exist.
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Another consideration, given extensive use of the research environment, is the speed and
versatility of processing related to the implementation of the environment. The present im-
plementation of the model was developed on a Symbolics Lisp machine and was developed
for in-house use. This lisp machine was chosen for its flexibility and power in symbolic
manipulation and for its exploratory programming environment. The implementation lan-
guage is Lisp. In order to enhance processing speed, there is a plan to port the environment
to a SUN4-280. Additional speed enhancements may be achieved by converting list struc-
tures to arrays and/or reprogramming in the C language. Although the environment is
currently organized to dynamically create an instantiation of Kunihiko Fukushima’s neocog-
nitron (Fukushima and Miyake, 1982), the versatility of the environment will be tested by

instantiating additional neural network models.

7 Conclusion

This paper has discussed the successes and the corresponding challenges faced in the devel-
opment of a generalized research environment for neural networks, particularly large scale
networks such as the neocognitron (Fukushima, 1980). A variety of artificial intelligence and
software modularization techniques have been shown to yield a research environment which
can dynamically create (instantiate) neural network models. Although the results presented
in this paper have concentrated on the research environment in the context of the neocog-
nitron, the environment has been designed to incorporate the dynamic creation of a wide
range of neural network models. The importance of the general-purpose nature is evident
upon consideration of the task of research into new neural network models and architectures.

With regard to neocognitrons in particular, the dynamically created model is based upon the
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formulas and discussion presented in Fukushima’s published works, especially (Fukushima
and Miyake, 1982). The environment has been tested by instantiating this particular class
of networks called neocognitrons. The dynamically created neocognitrons have been used
to reproduce the general behavior of the varying excitation patterns within the hierarchy of
Fukushima’s pattern recognition architecture for computer vision (Fukushima and Miyake,
1982). The environment has also been used to used to test the neocognitron on real-world
images (Gilmore and Czuchry, Jr., 1990a; Gilmore and Czuchry, Jr., 1990b). The main virtue
of the neocognitron is that it is not sensitive to varying degrees of either of two fundamental
pattern recognition limitations: 1. positional shifts, and 2. pattern deformation (e.g., due to
noise or other forms of distortion). Future directions for investigating the neocognitron hold
significant promise and include the addition of feedback into the instantiated neocognitron’s
hierarchy (Fukushima, 1988) as well as extensions to the neocognitron network to provide
for handling ‘real’ images. An investigation is also being initiated to analyze the necessity
of networks such as Grossberg and Mingolla’s Boundary Contour/Feature Contour System
(Grossberg and Mingolla, 1985) for preprocessing input data, when real images are used with
the neocognitron. Future directions for the environment itself are based upon its use with a
variety of network models. Additional neural network models will be instantiated within the

environment and their behavior will be analyzed in a variety of pattern recognition tasks.
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Neural networks can be tliought of as combinations of generic pieces linked together
in varying architectures. Many different models and architectures have been
presented in the published literature. Networks may differ both in the
characterization of their pieces and in the connection patterns of those pieces.

In order to exploit the similarities between models, incorporate the differences
between models, and automate the process of linking the pieces together, a prototype
of a generalized research environment for neural networks is being developed. The
main virtue of this generalized environment is the flexibility it provides for test-
ing wvarious neural network architectural and processing decisions without having to
write programs. The viability of this research environment has been demonstrated by
its use in the development of a generalized implementation of Kunihiko Fukushima's
neocognitron. This paper initially introduces the generalized research environment,
subsequently discusses the architecture of a test case network (the neocognitron),
and finally presents the initial results in testing a neocognitron instantiated by
the environment.
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